The equilibrium dynamics and statistics of gravity–capillary waves

نویسندگان

  • W. Kendall Melville
  • Alexey V. Fedorov
چکیده

Recent field observations and modelling of breaking surface gravity waves suggest that air-entraining breaking is not sufficiently dissipative of surface gravity waves to balance the dynamics of wind-wave growth and nonlinear interactions with dissipation for the shorter gravity waves of O(10) cm wavelength. Theories of parasitic capillary waves that form at the crest and forward face of shorter steep gravity waves have shown that the dissipative effects of these waves may be one to two orders of magnitude greater than the viscous dissipation of the underlying gravity waves. Thus the parasitic capillaries may provide the required dissipation of the short wind-generated gravity waves. This has been the subject of speculation and conjecture in the literature. Using the nonlinear theory of Fedorov & Melville (J. Fluid Mech., vol. 354, 1998, pp. 1–42), we show that the dissipation due to the parasitic capillaries is sufficient to balance the wind input to the short gravity waves over some range of wave ages and wave slopes. The range of gravity wave lengths on which these parasitic capillary waves are dynamically significant approximately corresponds to the range of short gravity waves that Cox & Munk (J. Mar. Res., vol. 13, 1954, pp. 198–227) found contributed significantly to the mean square slope of the ocean surface, which they measured to be proportional to the wind speed. Here we show that the mean square slope predicted by the theory is proportional to the square of the friction velocity of the wind, u∗, for small wave slopes, and approximately u∗ for larger slopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)

Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...

متن کامل

An Estimation of Wave Attenuation Factor in Ultrasonic Assisted Gravity Drainage Process

It has been proved that ultrasonic energy can considerably increase the amount of oil recovery in an immiscible displacement process. Although many studies have been performed on investigating the roles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluate wave attenuation parameter, which is an important parameter in the determination of the energy...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

Capillary-gravity and capillary waves generated in a wind wave tank: observations and theories

Short water surface waves generated by wind in a water tunnel have been measured by an optical technique that provides a synoptic picture of the water surface gradient over an area of water surface (Zhang & Cox 1994). These images of the surface gradient can be integrated to recover the shape of the water surface and find the two-dimensional wavenumber spectrum. Waveforms and two-dimensional st...

متن کامل

STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.

Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016